ciepanek Posted June 24, 2008 Share Posted June 24, 2008 Wersja amerykanska naszej primery (Sentra) w przeciwienstwie do naszego rodzimego GA16DE miala 115PS. Szukalem ostatnio co poza innym kolektorem dolotowym i walkami rozrzadu spowodowalo taki wzrost mocy i znalazlem cos ciekawego:) Kupilem niedawno walki rozrzadu z sentry i zastanawialo mnie dlaczego na walku ssacymm za zebatka jest jeszcze takie "sprzegielko". Nazywa sie to NVCS i sa to zmienne fazy rozrzadu sterowane przez ecu. i tu zapraszam do lektury : GA16DE - spojrzcie na zdjecie po stronie rozrzadu Quote Link to comment Share on other sites More sharing options...
Coobcio Posted June 24, 2008 Share Posted June 24, 2008 dlatego jak się swapuje taki wałek do naszego europejskiego GA16DE to warto przestawić rozrząd... no i dzięki temu zyskujemy dół to dosyć częsty mod w SR20DET z S14 gdzie się wywala wariator i przestawia wałek, wada tego to to że wolne obroty mogą nie być aksamitne. Quote Link to comment Share on other sites More sharing options...
mimier Posted June 24, 2008 Share Posted June 24, 2008 i sa to zmienne fazy rozrzadu sterowane przez ecu a trzeba też ecu z sentry swapować??? Quote Link to comment Share on other sites More sharing options...
ciepanek Posted June 24, 2008 Author Share Posted June 24, 2008 jezeli masz caly silnik z sentry i chcesz go wlozyc to musisz dac ecu z sentry albo swiniaka a jezeli chcesz tylko przelozyc walki, to to"sprzegielko" na walku ssacym i tak musisz odkrecic bo gora silnika nie jest przystosowana do tego zeby walek sie zmiescil z nim. Z tego co czytalem to ta faza wskakuje juz od ~1500 obr/min do ~6400 wiec zakres uzywany praktycznie tylko przy ruszaniu... Quote Link to comment Share on other sites More sharing options...
Tomaszek Posted June 24, 2008 Share Posted June 24, 2008 tu masz ten sam temat z moimi fotkami http://www.nissanklub.pl/forum/viewtopic.php?t=22765 Quote Link to comment Share on other sites More sharing options...
Guest mdzalewscy Posted June 25, 2008 Share Posted June 25, 2008 Wersja amerykanska naszej primery (Sentra) w przeciwienstwie do naszego rodzimego GA16DE miala 115PS. wersja amerykańska Primery to Infiniti G20, a klasowo to raczej Altima, a Sentra to Almera Quote Link to comment Share on other sites More sharing options...
Guest Wald Posted June 26, 2008 Share Posted June 26, 2008 ta faza wskakuje juz od ~1500 obr/min do ~6400 No to chyba nie bardzo. Coobcio jak jechal ze mna to slyszal jak ona sie przelacza i bynajmniej nie bylo to przy 1500. Quote Link to comment Share on other sites More sharing options...
Onyx Posted June 26, 2008 Share Posted June 26, 2008 Wald ma racje, one sie zalaczaja duzo pozniej tak od ok 3300 i wylaczaja przy ok 4500-4700, takze pracuja w bardzo waskim zakresie Quote Link to comment Share on other sites More sharing options...
Guest red_shogun Posted June 26, 2008 Share Posted June 26, 2008 ... W gwoli ścisłości: CAM-CHANGING SYSTEMS: - Honda VTEC - Mitsubishi MIVEC - Nissan Neo VVL (not used in US market) CAM-PHASING SYSTEMS: - Audi 2.0-litre - continous inlet - Audi 3.0 V6 - continous inlet, 2-stage exhaust - Audi V8 - inlet, 2-stage discrete - BMW Double Vanos - inlet and exhaust, continuous - Ferrari 360 Modena - exhaust, 2-stage discrete - Fiat (Alfa) SUPER FIRE - inlet, 2-stage discrete - Ford Puma 1.7 Zetec SE - inlet, 2-stage discrete - Ford Falcon XR6's VCT - inlet, 2-stage discrete - Jaguar AJ-V6 and updated AJ-V8 - inlet, continuous - Lamborghini Diablo V12 since SV - inlet, 2-stage discrete - Mazda MX-5's S-VT - continous inlet - Mercedes V6 and V8 - inlet, 2-stage ? -Nissan QR four-pot and V8 - continuous inlet - Nissan NVCS - late-80's, early-90's cars (added by SteVTEC) - Nissan VQ V6 CVTC - inlet, continuous ? - Nissan VQ V6 CVTC since Skyline V35 - inlet, electromagnetic - Porsche Variocam - inlet, 3-stage discrete - PSA / Renault 3.0 V6 - inlet, 2-stage - Renault 2.0-litre - inlet, 2-stage discrete - Subaru AVCS - inlet, 2-stage ? - Toyota VVT-i - continuous, mostly inlet but some also exhaust - Volvo 4 / 5 / 6-cylinder modular engines - inlet, continuous - Volkswagen VR6 - inlet, continuous ? - Volkswagen (Audi) W8 and W12 - continuous inlet, 2-stage exhaust CAM-CHANGING SYSTEMS & CAM-PHASING SYSTEMS: - Toyota VVTL-i - Honda i-VTEC - Porsche VarioCam Plus HISTORY: General Motors patented the first variable valve timing and lift or smart valve system in September of 1975. GM was interested in throttling the intake valves in order to reduce emissions. This was done by minimizing the amount of lift at low load to keep the intake velocity higher, thereby atomizing the intake charge. GM encountered problems running at very low lift, and abandoned the project. Fiat had employed the first functional variable valve timing system, including variable lift. Developed by Giovanni Torazza in the 1970s, the system used hydraulic pressure to vary the fulcrum of the cam followers. The hydraulic pressure changed according to engine speed and intake pressure. The typical opening variation was 37%. In 1986 Nissan developed their own form of VVT with the VG30DE {TT) engine for their Mid-4 Concept. Nissan chose to focus their NVCS (Or Nissan Valve-Timing Control System) mainly at low and medium speed torque production because the vast majority of the time, engine RPMs will not be at extremely high speeds. The NVCS system can produce both a smooth idle and high amounts of low and medium speed torque. Although it can help a little at the top-end also, the main focus of the system is low and medium range torque production. The VG30DE engine was first used in the 300ZX (Z31) 300ZR model in 1987, being the first production car to use VVT technology. The next big step was taken in 1989 by Honda with the VTEC system. Honda had started production of a system that gives an engine the ability to operate on two completely different cam profiles, eliminating a major compromise in engine design. One profile designed to operate the valves at low engine speeds provides good road manners, low fuel consumption and low emissions output. The second profile is comparable to the profile of a race cam and comes into operation at high engine speeds to provide a large increase in power output. The VTEC system was also further developed to provide other functions in engines designed primarily for low fuel consumption. The first VTEC engine Honda produced was the B16A which was installed in the Integra/CRX/Civic Hatchback available in Japan and Europe. In 1991 the Acura/Honda NSX became the first VTEC equipped vehicle available in the US. VTEC can be considered the first "cam switching" system and is also one of only a few currently in production. In another development in 1991, Clemson University researchers had developed and patented the Clemson Camshaft which improved fuel economy. The Clemson Camshaft system provided a continuously variable system. One cam shaft rotates inside the other creating infinitely more settings. Similarly, General Motors, the maker of Cadillac employed an advanced technology to develop a continuously variable system for the Cadillac Northstar System, VVT (Variable Valve Timing). The NorthStar VVT provides continuously variable system throughout the RPM range. The overhead cam (OHC) Cadillac NorthStar, already a fuel efficient V-8 engine, became even more efficient with VVT. GM engines use the double overhead cam varying both intake and exhause for better performance. In 2005, General Motors offered the first Variable Valve timing system for overhead valve V6 engines, LZE and LZ4. In 1992, BMW introduced VANOS, their version of a variable valve timing system, on the BMW M50 engine used in the 3 Series. VANOS significantly enhances emission management, increases output and torque, and offers better idling quality and fuel economy. The latest version of VANOS is double-VANOS, used in the new M3. Double-VANOS adds an adjustment of the intake and exhaust camshafts. Ford became the first manufacturer to use variable valve timing in a pickup-truck, with the top-selling Ford F-series in the 2004 model year. The engine used was the 5.4L 3-valve Triton. VVT Implementations: * Aftermarket Modifications Conventional hydraulic tappet can be engineered to rapidly bleed-down for variable reduction of valve opening and duration. * Alfa Romeo Twin Spark - TS stands for "Twinspark" engine, it is equipped with Variable Valve Timing technology. * BMW VANOS - Varies intake and exhaust timing by rotating the camshaft in relation to the gear. * Ford Variable Cam Timing - Varies valve timing by rotating the camshaft * GM DCVCP (Double Continuous Variable Cam Phasing) - Varies timing with hydraulic vane type phaser (see also Ecotec LE5). * Honda VTEC - Varies duration, timing and lift by switching between two different sets of cam lobes * Honda i-VTEC - Adds continuous cam phasing (timing) to traditional VTEC * Hyundai MPI CVVT Varies power, torque, exhaust system, and engine response * Mazda S-VT - Varies timing by rotating the camshaft * Mitsubishi MIVEC - Varies valve timing and lift * Nissan N-VCT - Varies the rotation of the cam(s) only, does not alter lift or duration of the valves. * Nissan VVL - Varies intake, duration, and lift by using two different sets of cam lobes * Porsche VarioCam - Varies intake timing by adjusting tension of a cam chain * Porsche VarioCam Plus - Varies intake timing by adjusting tension of a cam chain as well as valve lift by different cam profiles * Proton Campro CPS - Still under development, said to be based on Lotus technology which developed Porsche's VarioCam * PSA Peugeot Citroën CVVT - Continuous variable valve timing * Rover VVC - Varies timing with an eccentric disc * Suzuki VVT * Subaru AVCS - Varies timing (phase) with hydraulic pressure * Toyota VVT-i - Varies intake timing by advancing the cam chain * Toyota VVTL-i - Varies timing by advancing the cam chain and switching between two sets of cam lobes * Volkswagen VVT * Volvo VVT NVCS: NVCS is the acronym for Nissan Variable cam system, it is found in the RB25DE, RB25DET and the RB25DET NEO. NVCS is not to be confused with Hondas V-TECH system which alters lift and duration high in the rev range to give higher peak power. Nissans system uses cam phasing to increase low to mid end engine torque. Optimal valve opening and closure position for a given duration is different for every RPM and load combination, NCVS gives the engine the ability to take these factors into consideration and alters the timing accordingly. This is done using an electronic solenoid which adjusts the rotation of the cam by a maximum of 20 degrees, the solenoid is controlled by the engines ECU. The RB25DE and RB25DET found in the R33 Nissan skyline only use the NVCS system on the intake Cam. The R34 Nissan Skyline is equipped with the NEO version of this engine and both intake and exhaust cams use the NVCS system. The RB20DET and RB26DETT do not use NVCS. Torque curve of a VG30DETT with NVCS off and on notice the low to mid torque increase with the system turned on. NVCS makes a considerable difference to low and mid range torque so when it comes to upgrading cams or installing cam gears it is a good idea to keep this system in place. Some manufactures (like tomei's poncam range) make cams to work with NVCS I highly recommend you consider these. As the non NEO RB25's only have NVCS on intake side an exhaust cam gear can be used as a good cheap upgrade to improve mid to high end torque. Nissan NVCS and "Cam-Phasing" vs Honda VTEC: Nissan chose to focus their NVCS system mainly at low and medium speed torque production because the vast majority of the time, engine RPMs will not be at extremely high speeds. The NVCS system can produce both a smooth idle, and high amounts of low and medium speed torque. Although it can help a little at the top-end also, the main focus of the system is low and medium range torque production. We all know how Honda's VTEC system works, but here is where it runs into trouble. Since it only has one profile with fixed phasing for low-RPM's (cannot advance or retard valve opening/closure), the low-RPM profile must be able to produce a smooth idle and stable running at light loads. This means retarded intake valve opening. At low and medium revs but high load, the intake valves cannot advance on the low-RPM profile like they could on Nissan's NVCS, so volumetric efficency is possibly lost, and torque production cannot be optimized in this range. Finally at the top-end, a higher lift and duration cam profile is used and the system drastically improves top-end torque production (peak horsepower), but it is never able to optimize torque in the low-end or mid-range. So the NVCS system and in general cam phasing technology helps significantly in the low-end and mid-range with torque production, but really not that much at the top-end. Honda's VTEC helps significantly at the top-end (peak horsepower), but not at all in the low-end and mid-range. Summary: Nissan's 1986 NVCS system took advantage of the fact that the optimal intake valve opening and closure position for a given duration is different for every RPM and load combination. Varying the phase helps significantly with low and medium range torque production which is most important for most people. The engine is only going to spend a very small amount of time at or near redline, so perhaps optimizing an engine for operation in this range does not make as much sense? Indeed, the vast majority of variable valve timing systems in use today (Audi/VW, BMW VANOS, Porsche Variocam, Subaru AVCS, Toyota VVT-i, Nissan's 2nd Gen CVTC, etc) are all "cam phasing" systems just like Nissan's original NVCS system that favor low and medium speed torque production over all-out top-end. Additionally, these systems are also cheaper to adopt and less complex than cam-changing systems as well which lower manufacturing costs and costs to the consumer. As a final punchline, even Honda has now finally adopted a cam phasing system with their i-VTEC engines which also uses their traditional cam changing technology as well. Maybe Honda has finally seen the light and realized that some of us do actually expect some power below 5000 rpm? :goofy: Now if only they would put i-VTEC systems in their V-6 lines (4-cylinder only so far). They still need some help in the torque production department, especially when pulling 3300-3500+ lb automobiles with only 3.0-3.2L engines. Żródło: Wikipedia & http://jgsh77.multiply.com http://nissanskyline.6te.net sorry za aż tak pokaźną wlepę, ale może się komuś przyda I JESZCZE TU COŚ PO POLSKU, MYŚLĘ ŻE BARDZIEJ OBRAZOWO: http://www.webiz.pl/zmienna-faza-rozrzadu Pozdrawiam Quote Link to comment Share on other sites More sharing options...
Guest lobes Posted June 7, 2009 Share Posted June 7, 2009 Mam bardzo dla mnie ważne pytanie. Kupuje właśnie silnik GA16DE NVCS, który zamierzam wsadzić do Sunny N14 z silnikiem GA16DS. Silnik jest cały kompletny z ecu. Nie wiem tylko co powinno wchodzić w jego skład z instalacji elektrycznej, ponieważ w tej kwestii jestem laikiem. Podczas SWAPA takiego silnika będzie potrzebna cała nowa wiązka elektryczna? (mam nadzieję, że nie). Jaka część wiązki jest potrzebna? Pompa paliwa teraz zamiast mechanicznej będzie elektryczna, więc też musi iść tam jakaś instalacja? Quote Link to comment Share on other sites More sharing options...
Coobcio Posted June 7, 2009 Share Posted June 7, 2009 Nie wiem tylko co powinno wchodzić w jego skład z instalacji elektrycznej, ponieważ w tej kwestii jestem laikiem. Podczas SWAPA takiego silnika będzie potrzebna cała nowa wiązka elektryczna? (mam nadzieję, że nie). Jaka część wiązki jest potrzebna? Pompa paliwa teraz zamiast mechanicznej będzie elektryczna, więc też musi iść tam jakaś instalacja? Składaj na swojej za GA14/16 DE do tego ECU master obslurzy ci zmienną faze i zadba o wache i zapłon Quote Link to comment Share on other sites More sharing options...
Guest lobes Posted June 7, 2009 Share Posted June 7, 2009 Nie wiem tylko co powinno wchodzić w jego skład z instalacji elektrycznej, ponieważ w tej kwestii jestem laikiem. Podczas SWAPA takiego silnika będzie potrzebna cała nowa wiązka elektryczna? (mam nadzieję, że nie). Jaka część wiązki jest potrzebna? Pompa paliwa teraz zamiast mechanicznej będzie elektryczna, więc też musi iść tam jakaś instalacja? Składaj na swojej za GA14/16 DE do tego ECU master obslurzy ci zmienną faze i zadba o wache i zapłon Tylko, że w aucie tam jest wiązka od GA16DS. Jak pamiętam przy seryjnym ECU od tego silnika ze zmiennymi fazami rozrządu idą dwie wtyczki (jedna chyba od kabli idących do kabiny, a druga pd maskę). Mam wiązkę całą, ale tego nie da się przełożyć, ponieważ jest tyle kabli, że ciężko się w tym połapać Wyróżniają się tylko kable które idą chyba z ECU do wtrysków (przynajmniej tak mi się wydaje po końcówkach wtyczek) Pompę paliwa i bak też mam od wersji wtryskowej. Tylko nie wiem co z tą instalacją elektryczną Quote Link to comment Share on other sites More sharing options...
bodek_n14 Posted June 7, 2009 Share Posted June 7, 2009 Spokojnie, Coobcio zna się na rzeczy. W końcu klubowe Sunny i Primery VE też mają oryginalną wiązkę a zmienne fazy ogarniają. Quote Link to comment Share on other sites More sharing options...
Guest lobes Posted June 7, 2009 Share Posted June 7, 2009 Spokojnie, Coobcio zna się na rzeczy. W końcu klubowe Sunny i Primery VE też mają oryginalną wiązkę a zmienne fazy ogarniają. To jest dopiero mój 3 post. To, że Coobcio zna się na rzeczy nie podlega żadnej dyskusji, ponieważ odwiedzam forum od kilku lat i zawsze z wielką ciekawością śledziłem jego projekty ... no i nie bez powodu mówi się o nim Dr Nismo Skoro mam się oprzeć na wiązce od GA16DS (też sobie nie wyobrażałem, żeby wymieniać całą wiązkę - pewnie z 30 kg kabli) to jaka część będzie mi tej wiązki potrzebna? Na pewno te kable co idą do listy wtryskowej od oryginalnego ECU, co jeszcze? W ogóle będzie mi to grało na seryjnym ECU czy będę musiał kupić jakąś "świnkę" ? To co pisałem w poprzednim poście nie mija się z prawdą? Quote Link to comment Share on other sites More sharing options...
bodek_n14 Posted June 7, 2009 Share Posted June 7, 2009 Skoro mam się oprzeć na wiązce od GA16DS skoro masz DS to niestety musisz podmienić całą wiązkę na wiązkę z DE. DS to gaźnik sterowany elektronicznie i nie ma tam mowy o wtryskach. [ Dodano: Nie 07 Cze, 2009 18:44 ] no i oczywiście komputer z DE też musisz włożyć + ecu master Quote Link to comment Share on other sites More sharing options...
Coobcio Posted June 7, 2009 Share Posted June 7, 2009 Oj to ja już bym się nie rozdrabniał i wrzucił motorownie z jakiegoś sunnego GTI Jak masz DS to musisz całą wiązkę silnikową zmieniać... Quote Link to comment Share on other sites More sharing options...
Guest lobes Posted June 7, 2009 Share Posted June 7, 2009 Oj to ja już bym się nie rozdrabniał i wrzucił motorownie z jakiegoś sunnego GTI Jak masz DS to musisz całą wiązkę silnikową zmieniać... No niestety mam jak narazie tylko GA16DE NVCS ... Jak silnik jest wyjęty, to od razu mam zamiar powymieniać najważniejsze rzeczy, płyny, może coś dłubnąć ... da się coś fajnego z tym silnikiem zrobić nie wydając góry złota? Przez całą wiązkę rozumiemy 30 kg kabla który jest pod maską i w kabinie czy tylko wiązkę, która idzie od ECU pod maskę? Quote Link to comment Share on other sites More sharing options...
Coobcio Posted June 8, 2009 Share Posted June 8, 2009 no i jeszcze nie zapomnij ogornej czesci baku paliwa oraz zanurzeniowej pompie Ew. można pojść na łatwiznę i dać zewnętrzną... Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.